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The cornerstone of fiber-optic distributed
vibration/acoustic sensing: Ф-OTDR
Yunjiang Rao*

Fiber-optic distributed  vibration/acoustic  sensing  (DVS/DAS)  technology  achieves  breakthrough  performance  and  ex-
plores broad cornerstone industrial applications.
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 Background
Since the  phase-sensitive  optical  time-domain  reflecto-
metry  (Ф-OTDR)  concept  was  proposed  in  19931,  Ф-
OTDR has  undergone rapid  development  and extensive
studies.  The first  practical  DVS system based on Ф-OT-
DR was demonstrated with a powerful narrow linewidth
laser  in  20082.  Ф-OTDR  is  capable  of  covering  long
measurement  range  while  maintaining  high  sensitivity
and spatial resolution along the sensing fiber3,4. Based on
this,  researchers  have  made  great  effort  on  Ф-OTDR
sensing  performance  improvement,  including  sensing
distance, sensitivity,  spatial  resolution,  frequency  re-
sponse  range,  event  recognition  accuracy,  etc.  Based  on
its superior  long-distance  and  high-resolution  distrib-
uted  vibration/acoustic  sensing  capabilities,  Ф-OTDR
technology has been widely used in earthquake monitor-
ing, oil and gas resource exploration, pipeline leak detec-
tion, perimeter  intrusion  monitoring,  cable  partial  dis-
charge detection and other fields with a large number of
successful application demonstrations.

In the recent work5 entitled "Advances in phase-sensit-
ive  optical  time-domain  reflectometry"  published  in
Opto-Electronic  Advances,  DOI:  10.29026/oea.2022.
200078, Prof.  Liyang Shao et  al.  present in detail  the re-
search progress  and  applications  of  DVS/DAS  techno-

logy based Φ-OTDR. This article was selected as the back
cover  paper  of  Volume  3,  Issue  5  of  OEA  in  2022,  and
was  recently  selected  as  a  highly  cited  paper  by  Web  of
Science.

 Principle
The article  first  analyzes  the  sensing  principles  of  DVS-
Ф-OTDR based  on  Raleigh  backscattering  intensity  de-
modulation and  DAS-Ф-OTDR  based  on  phase  de-
modulation. The  article  focuses  on  comparing  and  dis-
cussing DAS  phase  demodulation  technologies,  includ-
ing  IQ  demodulation  based  on  heterodyne  detection,
Hilbert transform  scheme  based  on  heterodyne  detec-
tion, direct detection method based on 3×3 coupler, and
direct detection method based on phase-generated carri-
er technology. Recently, S. Liu et al. proposed a fast gen-
eration method of phase orthogonal signals in the digital
domain.  By  using  the  phase  difference  of  beat  signals
between adjacent  spatial  sampling channels,  the fast  de-
modulation of  vibration  is  realized,  which  greatly  re-
duces  the  computational  complexity  of  the  Φ-OTDR
phase demodulation process6.

 Performances
Ф-OTDR enables distributed measurements of vibration, 
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dynamic  strain,  etc.,  which  can  usually  be  evaluated  by
several  technical  parameters,  mainly  including  sensing
distance, signal-to-noise  ratio,  sensitivity,  frequency  re-
sponse  range,  spatial  resolution,  and  event  recognition
capability.  This  review  article  provides  a  detailed  and
valuable summary and analysis of the recent progress in
improving key parameters of Ф-OTDR in recent years.

Φ-OTDR  uses  the  very  weak  backscattered  light  in
fiber as  the  signal.  With the  increase  in  the  sensing dis-
tance,  the  signal  decays  exponentially,  which  renders
long-distance measurement difficult.  In 2014, F. Peng et
al.  proposed to  apply  heterodyne detection and first-or-
der bidirectional  Raman  amplification  to  Φ-OTDR,  in-

creasing  the  sensing  distance  to  131.5  km7.  In  the  same
year, Z. Wang et al. proposed a hybrid distributed ampli-
fication method combining first-order Raman amplifica-
tion,  second-order  Raman  amplification,  and  Brillouin
amplification to achieve a sensing distance of 175 km8.

SNR is  the  key  parameter  that  determines  the  per-
formance of  Φ-OTDR.  It  not  only  determines  the  sens-
ing distance, but also the sensitivity and accuracy. On the
one hand, SNR can be improved by increasing the signal
strength  by  amplifying  the  optical  power  of  the  probe
and compensating  the  fiber  transmission  loss,  and  sup-
pressing the system noise. Some methods have also been
proposed to suppress low-frequency noise9−13.  Data with
high SNR  are  usually  large,  which  causes  many  prob-
lems in practice. In 2022, F. Yu et al.  explored the effect
of sampling accuracy on phase demodulation of a Φ-OT-
DR system. The researchers successfully recovered the si-
nusoidal  disturbance  signal  imposed  by  the  PZT  from
the  original  data  with  1bit  precision,  and  the  SNR
reached  58.03  dB,  which  is  only  5  dB  lower  than  the
16bits  data14.  Researchers  combined  the  ultra-low
sampling  accuracy  technology  with  the  down-sampling
technology  to  show  a  new  data  storage  scheme  (that  is,
storing the original data with low sampling rate and low
accuracy), which can not only greatly reduce the amount

 

Fig. 1 | Back cover of Volume 3, Issue 5 of OEA in 2022.
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Fig. 2 | Setup of DAS-Φ-OTDR system with different demodulation methods5.
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of  system  data,  but  also  provide  more  space  for  feature
selection in the later work of disturbance identification15.

The  spatial  resolution  of  Φ-OTDR  refers  to  the
shortest distance  between  distinguishable  events.  It  re-
flects the spatial recognition and positioning capabilities
and  is  related  to  probe  pulse  width,  photodetector
sampling rate, acquisition card, and so on.

In  order  to  solve  the  problem  that  Φ-OTDR  systems
can  locate  external  interference  but  cannot  distinguish
different  types  of  intrusion  events,  pattern  recognition
algorithms  for  Φ-OTDR  signal  post-processing  have
been widely studied in recent years4. Pattern recognition
algorithms like YOLO16 can automatically classify detec-
ted vibration  signals  into  interested  intrusions  and  un-
wanted environmental noise based on the signal charac-
teristics  of  the  vibration  signal,  greatly  improving  the
alarm  accuracy  and  reducing  the  false  alarm  rate  of  the
system.

 Applications
Through  appropriate  optical  configurations,  Φ-OTDR
can  measure  vibration,  dynamic  strain  or  temperature

distribution over long distances with high spatial resolu-
tion.  This  capability  makes  Φ-OTDR  widely  applicable
in different  scenarios.  This  review  summarizes  the  re-
cent  developments  of  Φ-OTDR  in  various  application
fields, including geological exploration, perimeter monit-
oring, traffic sensing, partial flow monitoring, and other
applications17,18.

An ultra-sensitive distributed fiber-optic  sensing seis-
mometer called uDAS, independently developed by Op-
tical  Science  and  Technology  (Chengdu)  Ltd.  of  China
National Petroleum  Corporation  (CNPC),  based  on  co-
herent detection and multi-frequency modulation meth-
od proposed by the Chinese researchers19,20, has been ap-
plied in all oil/gas fields of CNPC. Through the combina-
tion  of  optical  cables  in  oil  well  and  surface  geophones,
higher resolution  seismic  data  were  obtained,  which  ef-
fectively  improves  the  accuracy  of  formation  modeling
and obtains higher quality data, providing a strong tech-
nical guarantee  for  reservoir  characterization  and  de-
scription.  The  successful  development  and  large-scale
application  of  the  uDAS  instrument  has  promoted  the
extension  of  geophysical  exploration  technology  from
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Fig. 3 | Application of DAS-Φ-OTDR system17,18.
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oil/gas  exploration  to  reservoir  development,  opened  a
new era  of  high-precision  borehole  and  ground  com-
bined stereoscopic  exploration  and  reservoir  develop-
ment, and also demonstrated the great advantages of the
DAS technology.

Some cases  apply  Φ-OTDR  to  new  application  scen-
arios, such  as  detecting  pest  infections,  while  others  in-
troduce special  fibers  or  advanced  post-processing  al-
gorithms to  convert  the  measurement  of  target  physical
parameters into  vibration  detection,  strain  or  temperat-
ure changes along the sensing fiber, such as gas concen-
tration  levels  and  fiber  bending  directions.  These  novel
applications  have  demonstrated  that  Φ-OTDR  systems
are  promising  tools  applicable  to  various  scenarios  with
enormous potential.

 Future
Future research would focus on exploring new operating
principles,  developing  key  devices,  improving  system
performance, and expanding application areas of Φ-OT-
DR.  In  terms  of  operating  principles,  developing  new
light sources  such  as  optical  frequency  combs  and  spe-
cial sensing fibers including uwFBG arrays, fs-lasing en-
hanced  fibers,  or  multicore  fibers  will  further  improve
the performance of Φ-OTDR. In terms of data interpret-
ation  methods,  advanced  signal  processing  methods  in
artificial intelligence and computer science can be adop-
ted.  In practical  engineering applications,  it  is  necessary
to  develop  practical  interpretation  algorithms  that  are
based  on  unsupervised  learning.  In  addition,  Φ-OTDR
will  also  be  applied  to  more  fields  such  as  determining
the event  features  and locations of  underground activit-
ies or airborne aircraft and so on.
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